Name Student Number 03-59-250 Midterm 1 16/10/18 (80 min)

Note: Exams written in pencil will NOT be re-marked.

Fill out your name on each page. Make sure all pages are handed in at the end.

The distribution of marks for the questions is approximate, and may change. You may use the back of any page for additional space or rough work.

Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8	Group 9	Group 10	Group 11	Group 12	Group 13	Group 14	Group 15	Group 16	Group 17	Group 18
1 H 1.0078																	2 He 4.0026
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.938	9.012											10.806	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990	24.305											26.982	28.085	30.974	32.059	35.45	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti		Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.38	69.723	72.630	74.922	78.971	79.904	83.798
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.468	87.62	88.906	91.224	92.906	95.95	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	1.008
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	•	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		178,49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	-	-	-
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	•	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
		- 14	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
			138.91	140.12	140.91	144.24	144.91	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
		Ч	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			-	232.04	231.04	238.03	-	-	-	-	-	-	-	-	-	-	-

Common VSEPR geometries								
# of objects	2	3	4	5	6			
Base	linear	trigonal	tetrabedral	trigonal	octabedral			
geometry		planar	letruneurut	bipyramidal	octuneurut			

Some (maybe) useful equations and constants

$$\Delta E = h\nu = \Re\left(\frac{1}{n_l^2} - \frac{1}{n_h^2}\right) \qquad \qquad \Re = \frac{2\pi^2 \mu e^4}{(4\pi\varepsilon_0)^2 h^2} = 13.6 \text{ eV}$$

$$c = \lambda\nu \qquad \qquad Z^* = Z - \sigma \qquad \qquad E_n = -\Re\left(\frac{Z^{*2}}{n^2}\right)$$

Speed of light: $c = 2.998 \times 10^8$ m/s Planck's constant: $h = 6.6261 \times 10^{-34}$ J·s Avogadro's constant: $N = 6.022 \times 10^{23}$ mol⁻¹

 $\begin{array}{ll} D_{(A-B),theory} = \frac{1}{2} \left(D_{(A-A)} + D_{(B-B)} \right) & \Delta'_{(A-B)} = D_{(A-B),experiment} - D_{(A-B),theory} \\ \chi_A - \chi_B = 0.102 \left(\Delta'_{(A-B)} \right)^{\frac{1}{2}} \end{array}$

Born-Mayer equation	$\Delta U_0 = 1390 \text{ Å} \times \left(\frac{q_A q_B}{r_0}\right) \times A \times \left(1 - \frac{0.345 \text{ Å}}{r_0}\right) \text{ in } \frac{1}{n}$	kJ nol
Kapustinskii equation	$\Delta U_0 = 1210 \text{ Å} \times n \times \left(\frac{q_A q_B}{r_0}\right) \times \left(1 - \frac{0.345 \text{ Å}}{r_0}\right) \ln \frac{1}{m}$	kJ 10l

Relativistic relationships:

$$v = \frac{Ze^2}{2\varepsilon_0 h} \qquad \qquad \mathbf{m}_{rel} = \frac{\mathbf{m}_{rest}}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$$
$$E_n = -\frac{m_e e^4}{8\varepsilon_0^2 h^2} \left(\frac{Z^2}{n^2}\right) \qquad \qquad r(n) = n^2 a_0 = n^2 \frac{Ze^2}{m_e 4\pi\varepsilon_0 v^2}$$
$$\mathbf{v} \propto \mathbf{Z} \qquad \qquad \mathbf{E}_n \propto -\mathbf{m}_e \qquad \qquad \mathbf{r}(n) \propto \frac{1}{m_e}$$

Slater's Rules:

1. Group electron configuration as follows:

(1s)(2s, 2p)(3s, 3p)(3d)(4s, 4p)(4d)(4f)(5s, 5p) etc

- 2. Electrons to the right (in higher subshells and shells) of an electron do not shield it.
- 3. If the electron of interest is an ns or np electron:
 - a) each other electron in the same group contributes 0.35 (0.30 for 1s)
 - b) each electron in an (n 1) group contributes 0.85
 - c) each electron in an (n-2) or lower group contributes 1.00
- 4. If the electron of interest is an nd or nf electron:
 - a) each other electron in the same group contributes 0.35
 - b) each electron in a lower group (to the left) contributes 1.00

Ν	am	ne	:

 Quick fire round! Circle or write the correct answer, as appropriate. [1 mark each] a) Compounds obeying the octet rule have an octahedral geometry 									
	True	False							
b) On the subato	mic scale, energy	v is on a continuum							
	True	False							
c) The earth's cr	c) The earth's crust is mostly made up of elements that are lighter than ire								
	True	False							
d) The mass of a	d) The mass of an electron is constant for all elements.								
	True	False							
e) An orbital is d	e) An orbital is described by 3 unique quantum numbers								
	True	False							
f) How many no	des do the orbital	s in $n = 6$ the energy level have?							
g) How many ang	gular nodes does a	an orbital with ℓ = 3 have?							
h) How many orb	oitals are there in	the $n = 5$, $\ell = 3$ subshell?							
i) Left to right a	cross a period, io	nisation energy							
	Increases	Decreases							
j) Top to bottom	n down a group, io	onisation energy							
	Increases	Decreases							
k) After the first	ionisation, the ra	adius of an atom							
	Increases	Decreases							

- 2. This (artificially coloured) image of the sun was recorded by NASA's Atmospheric Imaging Assembly using the light given off by iron atoms that have lost 11 electrons, at a wavelength of 19.3 nm
 - a) Calculate the energy (in joules) of one photon of light that is emitted from these iron atoms [2 marks]

- b) What is the energy per mole of photons? [1 mark]
- c) Assuming the atoms are following the Aufbau rules, what is the electronic configuration of these iron atoms? (Do not use noble gas abbreviations, write it all out!) [2 marks]
- d) The ground state electronic configuration of iron metal (on earth!) is $[Ar]3d^64s^2$. What is the effective nuclear charge experienced by these *d*-electrons in iron? [3 marks]

Name: _____

- 4.
- a) Sketch two diagrams for possible configurations of the p electrons in nitrogen. [2 marks]

b) Based on your diagrams above, write expressions for the energy of both of your arrangements in terms of Π_c (coulombic) and Π_e (exchange). [4 marks]

- c) Which of the two arrangements would you expect to be the lowest energy? [1 mark]
- d) Estimate the ionisation energy of oxygen (in eV), given that the effective nuclear charges experienced by the valence electrons in O and O+ are 4.55 and 4.90, respectively. [3 marks]

e) The experimental first ionisation energy for oxygen is 13.6 eV. Is this value higher or lower than your calculated value? Suggest a reason for this discrepancy [2 marks]

- 5. This question is about the group 6 metals.
 - a) The ground state electronic configuration of chromium is $[Ar]3d^54s^1$ rather than $[Ar]3d^44s^2$. Why? [1 mark]
 - b) What is the spin multiplicity of Cr? [1 mark]
 - c) The ground state of molybdenum is $[Kr]4d^55s^1$; however, the ground state of tungsten is $[Xe]5d^46s^2$. Suggest why tungsten breaks the trend, with a BRIEF explanation. (Think: what might be affecting the energy difference between the 5*d* and 6*s* orbitals?) [2 marks]

d) The only compound of chromium that is +5 is CrF₅. However, molybdenum forms MoF₅ and MoCl₅; and tungsten forms WF₅, WCl₅ and WBr₅. Why do you think this might be?
 [2 marks]

6.

a) Using the following data, estimate the value of ΔU_0 (KBr). [3 marks] r^+ (K⁺) = 1.33 Å r^- (Br⁻) = 1.82 Å

b) Using the following thermochemical data, construct a Born-Haber cycle for KBr(s) [3 marks] and hence determine the experimental value of ΔU_0 (KBr) [3 marks].

Note: Bromine is a liquid in its standard state. Dealing with this properly is worth 1 of the 6 marks in this question, so if you're not sure don't worry too much!

$\Delta H^{\circ}_{sublimation}(K(s)) = +89 \text{ kJ/mol}$	$\Delta H_{vapourisation}^{\circ}(Br_{2}(l)) = +29.8 \text{ kJ/mol}$	$\Delta H^{\circ}_{dissociation}(Br_2(g)) = +193 \text{ kJ/mol}$
$\Delta H_{ie}^{\circ}(K(g)) = +418.8 \text{ kJ/mol}$	$\Delta H_{ea}^{\circ}(Br(g)) = -324.6 \text{ kJ/mol}$	$\Delta H_f^{\circ}(KBr(s)) = -393.8 \text{ kJ/mol}$

c) The Kapustinskii equation is remarkably accurate for most compounds, usually giving a value within approx. 50 kJ/mol of the actual value (hint!). However, when ΔU_0 (AgBr) is predicted using the equation, the magnitude of the lattice enthalpy is 220 kJ/mol *smaller* than the real value. Suggest why the Kapustinskii equation not give a good value for AgBr. What assumptions are made when using the Kapustinskii equation? [2 marks]

7.

- a) What is a molecular ion? (Briefly!) [1 mark]
- b) Predict the structure of the PF_{6}^{-} ion [2 marks]

c) Predict the structure of the PF_{4} ion [3 marks]