03-59-250
 Midterm 1
 16/10/18 (80 min)

Note: Exams written in pencil will NOT be re-marked.
Fill out your name on each page. Make sure all pages are handed in at the end.
The distribution of marks for the questions is approximate, and may change. You may use the back of any page for additional space or rough work.

Group 1	${ }_{2}^{\text {Group }}$	$\underset{\underset{c}{\text { Group }}}{ }$	$\begin{gathered} \text { Group } \\ 4 \end{gathered}$	$\begin{gathered} \text { Group } \\ 5 \end{gathered}$	Group	$\begin{aligned} & \text { Group } \\ & 7 \end{aligned}$	$\begin{gathered} \text { Group } \\ 8 \end{gathered}$	$\begin{gathered} \text { Group } \\ 9 \end{gathered}$	$\begin{aligned} & \text { Group } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { Group } \\ & 11 \end{aligned}$	${ }_{17}^{\text {Group }}$	$\begin{gathered} \text { Group } \\ 13 \end{gathered}$	${ }^{\text {Group }} 14$	$\begin{aligned} & \text { Group } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Group } \\ & 16 \end{aligned}$	$\begin{aligned} & \text { Group } \\ & 17 \end{aligned}$	Group 18
$\stackrel{1}{1}$																	$\stackrel{2}{\mathrm{He}}$
$\frac{1.0078}{3}$	4											5		7			$\frac{4.002}{10}$
Li	Be											B	C	N	0	F	Ne
6.938	9.012											10.806	12.011	14.007	5.999		20.180
$\stackrel{11}{\mathrm{Na}}$	Mg^{12}											$\begin{aligned} & \text { Al } \\ & \text { Al } \end{aligned}$	${ }_{\text {Si }}$	P	${ }^{16}$	Cl	Ar
${ }_{22}{ }_{20}$												${ }_{26.982}$	${ }_{28.085}$	30.974	${ }_{32}{ }^{\text {a }}$ S	${ }_{35.45}$	
${ }^{19}$	${ }^{20}$	${ }^{21}$	${ }^{22}$	${ }^{23}$	${ }^{24}$	25	${ }^{26}$	${ }^{27}$	${ }^{28}$	${ }^{29}$	30	${ }^{31}$	32	${ }^{33}$	${ }^{34}$	${ }^{35}$	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
33.098	40.078	${ }_{44.95}$	47.867	50.942	51.996	54.938	55.845	${ }_{58,933}$	58.963	63.546	65.38	69.72	${ }^{72.650}$	74.92	78.971	79.94	
Rb	${ }^{38}$	$\stackrel{3}{7}$	Zr^{40}	Nb				$\stackrel{4}{ }$						${ }^{51}$	${ }^{52}$	${ }^{53}$	${ }^{54}$
${ }_{85.468}$	${ }_{87.62}$	${ }_{88,906}$	${ }_{912} 2$	${ }_{92.906}$	${ }_{9595}$	${ }_{\text {ç }}$	${ }_{10107}$	$\stackrel{\text { Rh }}{1029}$	${ }^{\text {Pd }}$	$\left\lvert\, \begin{array}{l\|l\|} \hline 109 \\ \hline \end{array}\right.$	Cd	${ }_{114}$	${ }_{118}^{18,71}$	${ }_{12176}$	${ }_{12}{ }^{2} 6$	12.90	X,
${ }^{55}$	${ }^{56}$		72	73	74	75	${ }^{76}$	77	${ }^{78}$	79		${ }^{81}$	82	83	${ }^{84}$	${ }^{85}$	
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
$\frac{132.91}{87}$	${ }_{\text {137.33 }}^{88}$		(178.49	180.95	${ }_{183}^{1084}$	${ }_{186.21}^{107}$	${ }_{190}^{108}$	$\frac{192.22}{109}$	${ }_{195.08}^{190}$	${ }_{196.97}^{111}$	${ }^{200.59}$	${ }_{\text {204.38 }}^{113}$	$\frac{207.2}{114}$	${ }_{208.98}^{115}$	${ }^{116}$	${ }^{11}$	${ }^{118}$
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
			La	${ }^{58}$	${ }^{59}$	$\begin{aligned} & \hline 60 \\ & \text { Nd } \end{aligned}$	$\begin{array}{\|l\|} \hline 61 \\ \hline 9 m \end{array}$	$\begin{aligned} & \hline 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{aligned} & \hline \hline 63 \\ & \text { Eu } \end{aligned}$	$\begin{aligned} & \hline \hline 64 \\ & \text { Gd } \end{aligned}$	$\begin{aligned} & \hline \hline 65 \\ & \mathrm{~Tb} \end{aligned}$	$\begin{aligned} & \hline 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & \hline \hline 67 \\ & \mathrm{Ho} \end{aligned}$	${ }^{68}$	Tm	Yb^{70}	${ }^{71}$
			${ }_{138.91}$	${ }_{140.12}$	${ }_{140.91}$	14.24				157.25		162.50	164.93	167.26	168.93	${ }_{173.05}$	
					91		${ }^{93}$	${ }^{94}$	Am	${ }^{96}$				${ }^{100}$	${ }^{101}$	${ }^{102}$	${ }^{103}$
			Ac	Th	Pa	$\underset{238.03}{\mathbf{U}}$	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Common VSEPR geometries						
\# of objects	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	
Base geometry	linear	trigonal planar	tetrahedral	trigonal bipyramidal	octahedral	

Some (maybe) useful equations and constants

$$
\begin{array}{rlrl}
\Delta E & =h v=\Re\left(\frac{1}{n_{l}^{2}}-\frac{1}{n_{h}^{2}}\right) & \Re=\frac{2 \pi^{2} \mu e^{4}}{\left(4 \pi \varepsilon_{0}\right)^{2} h^{2}}=13.6 \mathrm{eV} \\
c & =\lambda v & \mathrm{Z}^{*}=\mathrm{Z}-\sigma & E_{n}=-\Re\left(\frac{\mathrm{Z}^{* 2}}{n^{2}}\right)
\end{array}
$$

Speed of light: $\quad c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad$ Planck's constant: $\quad h=6.6261 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ Avogadro's constant: $\quad N=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$D_{(A-B), \text { theory }}=1 / 2\left(D_{(A-A)}+D_{(B-B)}\right)$

$$
\Delta_{(A-B)}^{\prime}=D_{(A-B) \text {, experiment }}-D_{(A-B), \text { theory }}
$$

$\chi_{A}-\chi_{B}=0.102\left(\Delta_{(A-B)}^{\prime}\right)^{1 / 2}$

$$
\Delta U_{0}=1390 \AA \times\left(\frac{q_{A} q_{B}}{r_{0}}\right) \times A \times\left(1-\frac{0.345 \AA}{r_{0}}\right) \text { in } \frac{\mathrm{kJ}}{\mathrm{~mol}}
$$

Kapustinskii equation

$$
\Delta U_{0}=1210 \AA \times n \times\left(\frac{q_{A} q_{B}}{r_{0}}\right) \times\left(1-\frac{0.345 \AA}{r_{0}}\right) \mathrm{in} \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Relativistic relationships:

$$
\begin{array}{cr}
v=\frac{\mathrm{Z} e^{2}}{2 \varepsilon_{0} h} & \boldsymbol{m}_{\text {rel }}=\frac{\boldsymbol{m}_{\text {rest }}}{\sqrt{\mathbf{1}-\left(\frac{\boldsymbol{v}}{\boldsymbol{c}}\right)^{2}}} \\
E_{n}=-\frac{m_{e} e^{4}}{8 \varepsilon_{0}{ }^{2} h^{2}}\left(\frac{\mathrm{Z}^{2}}{n^{2}}\right) & r(n)=n^{2} a_{0}=n^{2} \frac{Z e^{2}}{m_{e} 4 \pi \varepsilon_{0} v^{2}} \\
\boldsymbol{v} \propto \mathbf{Z} & \boldsymbol{E}_{\boldsymbol{n}} \propto-\boldsymbol{m}_{\boldsymbol{e}}
\end{array}
$$

Slater's Rules:

1. Group electron configuration as follows:

$$
(1 s)(2 s, 2 p)(3 s, 3 p)(3 d)(4 s, 4 p)(4 d)(4 f)(5 s, 5 p) \text { etc }
$$

2. Electrons to the right (in higher subshells and shells) of an electron do not shield it.
3. If the electron of interest is an $n s$ or $n p$ electron:
a) each other electron in the same group contributes $0.35(0.30$ for 1 s$)$
b) each electron in an $(n-1)$ group contributes 0.85
c) each electron in an ($\boldsymbol{n}-2$) or lower group contributes 1.00
4. If the electron of interest is an $\boldsymbol{n d}$ or $\boldsymbol{n} f$ electron:
a) each other electron in the same group contributes 0.35
b) each electron in a lower group (to the left) contributes 1.00
\qquad
5. Quick fire round! Circle or write the correct answer, as appropriate. [1 mark each]
a) Compounds obeying the octet rule have an octahedral geometry
True
False
b) On the subatomic scale, energy is on a continuum

True False
c) The earth's crust is mostly made up of elements that are lighter than iron.

True False
d) The mass of an electron is constant for all elements.

True False
e) An orbital is described by 3 unique quantum numbers

True False
f) How many nodes do the orbitals in $n=6$ the energy level have?
g) How many angular nodes does an orbital with $\ell=3$ have?
h) How many orbitals are there in the $n=5, \ell=3$ subshell?
i) Left to right across a period, ionisation energy....

Increases Decreases
j) Top to bottom down a group, ionisation energy....

Increases Decreases
k) After the first ionisation, the radius of an atom...
\qquad
2. This (artificially coloured) image of the sun was recorded by NASA's Atmospheric Imaging Assembly using the light given off by iron atoms that have lost 11 electrons, at a wavelength of 19.3 nm
a) Calculate the energy (in joules) of one photon of light
 that is emitted from these iron atoms [2 marks]
b) What is the energy per mole of photons? [1 mark]
c) Assuming the atoms are following the Aufbau rules, what is the electronic configuration of these iron atoms? (Do not use noble gas abbreviations, write it all out!) [2 marks]
d) The ground state electronic configuration of iron metal (on earth!) is [Ar] $3 d^{6} 4 s^{2}$. What is the effective nuclear charge experienced by these d electrons in iron? [3 marks]
\qquad
3. Sketch the following orbitals:
a) $1 s$; b) $2 p_{z}$ [1 mark each];
c) $3 p_{z} ;$ d) $3 d_{z^{2}} ;$ e) $4 d_{x z}$ [2 marks each]

e)

Bonus: Sketch and label any f orbital. Draw your own axes © [2 bonus marks]
\qquad
4.
a) Sketch two diagrams for possible configurations of the p electrons in nitrogen. [2 marks]
b) Based on your diagrams above, write expressions for the energy of both of your arrangements in terms of Π_{c} (coulombic) and Π_{e} (exchange). [4 marks]
c) Which of the two arrangements would you expect to be the lowest energy? [1 mark]
d) Estimate the ionisation energy of oxygen (in eV), given that the effective nuclear charges experienced by the valence electrons in O and $\mathrm{O}+$ are 4.55 and 4.90, respectively. [3 marks]
e) The experimental first ionisation energy for oxygen is 13.6 eV . Is this value higher or lower than your calculated value? Suggest a reason for this discrepancy [2 marks]
\qquad
5. This question is about the group 6 metals.
a) The ground state electronic configuration of chromium is [Ar] $3 d^{5} 4 s^{1}$ rather than [Ar] $3 d^{4} 4 s^{2}$. Why? [1 mark]
b) What is the spin multiplicity of Cr ? [1 mark]
c) The ground state of molybdenum is $[\mathrm{Kr}] 4 d^{5} 5 s^{1}$; however, the ground state of tungsten is [Xe] $5 d^{4} 6 s^{2}$. Suggest why tungsten breaks the trend, with a BRIEF explanation. (Think: what might be affecting the energy difference between the $5 d$ and $6 s$ orbitals?) [2 marks]
d) The only compound of chromium that is +5 is CrF_{5}. However, molybdenum forms MoF_{5} and MoCl_{5}; and tungsten forms $\mathrm{WF}_{5}, \mathrm{WCl}_{5}$ and WBr_{5}. Why do you think this might be?
[2 marks]
\qquad
6.
a) Using the following data, estimate the value of $\Delta U_{0}(\mathrm{KBr})$. [3 marks]

$$
r^{+}\left(\mathrm{K}^{+}\right)=1.33 \AA \quad r^{-}\left(\mathrm{Br}^{-}\right)=1.82 \AA
$$

b) Using the following thermochemical data, construct a Born-Haber cycle for $\mathrm{KBr}(\mathrm{s})$ [3 marks] and hence determine the experimental value of $\Delta U_{0}(\mathrm{KBr})$ [3 marks].
Note: Bromine is a liquid in its standard state. Dealing with this properly is worth 1 of the 6 marks in this question, so if you're not sure don't worry too much!

$$
\begin{array}{lll}
\Delta H_{\text {sublimation }}^{\circ}\left(\mathrm{K}_{(\mathrm{s})}\right)=+89 \mathrm{~kJ} / \mathrm{mol} & \Delta H_{\text {vapourisation }}^{\circ}\left(\mathrm{Br}_{2}(\mathrm{l})\right)=+29.8 \mathrm{~kJ} / \mathrm{mol} & \Delta H_{\text {dissociation }}^{\circ}\left(\mathrm{Br}_{2}(\mathrm{~g})\right)=+193 \mathrm{~kJ} / \mathrm{mol} \\
\Delta H_{\text {ie }}^{\circ}(\mathrm{K}(\mathrm{~g}))=+418.8 \mathrm{~kJ} / \mathrm{mol} & \Delta H_{\text {ea }}^{\circ}(\mathrm{Br}(\mathrm{~g}))=-324.6 \mathrm{~kJ} / \mathrm{mol} & \Delta H_{f}^{\circ}(\mathrm{KBr}(\mathrm{~s}))=-393.8 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

\qquad
c) The Kapustinskii equation is remarkably accurate for most compounds, usually giving a value within approx. $50 \mathrm{~kJ} / \mathrm{mol}$ of the actual value (hint!). However, when $\Delta U_{0}(\mathrm{AgBr})$ is predicted using the equation, the magnitude of the lattice enthalpy is $220 \mathrm{~kJ} / \mathrm{mol}$ smaller than the real value.
Suggest why the Kapustinskii equation not give a good value for AgBr . What assumptions are made when using the Kapustinskii equation? [2 marks]
7.
a) What is a molecular ion? (Briefly!) [1 mark]
b) Predict the structure of the $\mathrm{PF}_{6}{ }^{-}$ion [2 marks]
c) Predict the structure of the $\mathrm{PF}_{4}{ }^{-}$ion [3 marks]

