Name	Stude	nt Number
03-59-250	Midterm 2	08/11/18 (80 min)

Note: Exams written in pencil will NOT be re-marked.

Fill out your name on each page. Make sure all pages are handed in at the end.

Hint: There are questions of varying difficulty. Read through the exam and answer the easy ones first!

The distribution of marks for the questions is approximate, and may change. You may use the back of any page for additional space or rough work.

Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8	Group 9	Group 10	Group 11	Group 12	Group 13	Group 14	Group 15	Group 16	Group 17	Group 18
1 H 1.0078																	2 He 4.0026
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.938	9.012											10.806	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
22.990	24.305											26.982	28.085	30.974	32.059	35.45	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti		Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.38	69.723	72.630	74.922	78.971	79.904	83.798
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RD	Sr	Y	Zr	ND	Mo	IC	Ru	Rh	Pd	Ag	Cd	In	Sn	SD	le		Хе
85.468	87.62	88.906	91.224	92.906	95.95	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	1.008
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	•	Hf	la	w	ке	Os	Ir	Pt	AU	Hg	11	PD	B1	PO	At	Rn
132.91	137.33		178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	-	-	-
°/	00 D-		104 DE	105	100 C	10/	108	109	D -	D -	C	113	- 114 	115	110	T -	0-
- Fr	Ra -		- KJ	- 00	- 29	БП	⊢s -	μ -		Rg -		-	-	<i>M</i> C		- 1S	- Ug
		i II r	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
		14	la I	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ть	Dv	Ho	Fr	Tm	Yh	1.0
			138.91	140.12	140.91	144.24	144.91	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
		Ц	Ac	Th	Pa	U	ND	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			-	232.04	231.04	238.03	-	-	-	-	-	-)	-	-	-	-	_

Common VSEPR	geometries				
# of objects	2	3	4	5	6
Base	linear	trigonal planar	totrabodral	trigonal	octabodral
geometry	imeur	trigonai pianar	tetruneurui	bipyramidal	octuneurui

- Quick fire round! Circle or write the correct answer, as appropriate. [1 mark each]
 - a) Core electrons are too low in energy to be used for bonding

True False b) What does LCAO stand for? c) What does HOMO stand for? d) What does LUMO stand for? e) Hybridisation using *d*-orbitals is a good idea. True False f) x atomic orbitals produce 2x molecular orbitals False True g) If the integral of the product of an orbital with itself is equal to 1, then the orbital is referred to as: Orthonormal Normal Orthogonal

h) What word do we use to describe orbital interactions where S < 0?

i) The bonding molecular orbitals of a heteronuclear molecule typically have larger coefficients (c) for the atomic orbital functions (ϕ) of the less electronegative element

True False

- j) If the nuclear spin quantum number for a nucleus is $I = \frac{1}{2}$, list all the possible nuclear spin values.
- k) Which symmetry element do ALL molecules possess? Name and symbol, please.
- l) Which symmetry element must a molecule possess in order to label its orbitals g or u?
- m) The axis of highest-order rotation (also known as the principal rotation axis) is the....

x-axis y-axis z-axis

- 2.
- a) List three requirements when making molecular orbitals using the LCAO method.
 [3 marks]

- b) Sketch the following combinations of two *d*-orbitals (your choice as to which orbital, on two separate atoms!). Label which *d*-orbitals you choose.
 [2 marks each]
 - i) A σ bonding combination

ii) A π bonding combination

iii) A δ bonding combination

iv) A combination with S = 0.

- 3. This question is about the homonuclear diatomic B₂.
 - a) What are the ground state and first excited state electron configurations for boron? [1 mark]
 - B: B*:
 - b) Draw two *different* Lewis structures for B₂. How many bonds are there connecting the boron atoms in each diagram? [1 mark each]
 - i) Using the ground state configuration, without promoting to a valence state
 - ii) Using the valence state configuration.
 - c) Construct and label a molecular orbital diagram for B₂. Don't forget to label the HOMO and LUMO. [5 marks]

- d) Based on your molecular orbital diagram, what is the bond order of B_2 ? [1 mark]
- e) Would B₂ be attracted to an externally applied magnetic field (i.e. be paramagnetic)? Explain your answer. [2 marks]
- f) Briefly explain why sp mixing is seen in B₂ but not in F₂. [2 marks]

- 4. HO $^{\scriptscriptstyle -}$ and HF are two isoelectronic species.
 - a) Briefly define the term isoelectronic. [1 mark]
 - b) Draw and label a molecular orbital diagram for the hydroxide ion, HO⁻. Don't forget to label the HOMO and LUMO. [4 marks]

c) Based on your molecular orbital diagram for hydroxide, explain why HF is an acid. Think: how would the two diagrams compare? [2 marks]

• •	
Namo	
ivanie.	
	_

d) The HOMOs of water (H_2O) and hydroxide are both non-bonding atomic p-orbitals on the oxygen atom. Why is hydroxide considered a base, but H_2O is considered neutral? [2 marks]

- 5. Nitric oxide (NO) is an important intercellular signalling molecule that is involved in blood pressure regulation and neurotransmission.
 - a) Draw and label a molecular orbital diagram for NO. You may assume there is no *sp* mixing in NO. [4 marks]

b) Which orbitals are used to make the π -symmetry orbitals? Sketch <u>one</u> of each of the π -bonding and π^* antibonding orbitals for NO, clearly showing whether there is a greater contribution from N or O in each. [2 marks each]

- 6.
- a) The interaction of matter with light results in the transition between two quantised molecular energy states. Indicate which regions of the electromagnetic spectrum are associated with which transitions. [2 marks]

Infrared	Electronic transitions
Microwave	Nuclear spin transitions
Radio frequency	Rotational transitions
Ultraviolet	Vibrational transitions

b) How many signals would you observe in the ¹³C NMR spectra of each of these isomers of tetrafluorobenzene? [1 mark each]

Q6 continues on the next page

|--|

c) Predict the shape of the following 4 compounds and hence the number and relative intensity of peaks in the ¹⁹F spectrum: [3 marks each]

i) SF ₆	iii) SF₅⁻
ii) SF4	iv) SO ₂ F ₂

7.

a) What is the point group of MoF_6 ? List all of the symmetry elements found in this molecule. (I only require the type of element, not the number of each one). [5 marks]

Symmetry Elements?

b) Assign the point group to each of the following species. [1 mark each]

End of exam