Name	Student Number							
03-59-3310/3315	Midterm 1	27/02/19 (60 min)						

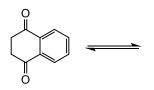
Fill out your name on each page. Make sure all pages are handed in at the end.

Hint: There are questions of varying difficulty. Read through the exam and answer the easy ones first!

The distribution of marks for the questions is approximate, and may change. You may use the back of any page for additional space or rough work.

Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8	Group 9	Group 10	Group 11	Group 12	Group 13	Group 14	Group 15	Group 16	Group 17	Group 18
1 H 1.0078																	2 He 4.0026
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.938	9.012											10.806	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
22.990	24.305	21	22	23	24	25	27	27	20	20	20	26.982 31	28.085 32	30.974 33	32.059	35.45 35	39.948 36
19 K	20		²² Ti	v v	²⁴ Cr	1	26		28 Ni	29	30 7 m				34	Br	
	Ca 40.078	Sc		· ·		Mn	Fe	Co		Cu	Zn	Ga 69.723	Ge	As	Se	DI 79.904	Kr
39.098 37	40.078	44.956 39	47.867 40	50.942 41	51.996 42	54.938 43	55.845 44	58.933 45	58.693 46	63.546 47	65.38 48	49	72.630 50	74.922 51	78.971 52	79.904	83.798 54
Rb	Sr	Ŷ	Zr	Nb	Mo	Tc	Ru	Rh	Pd		Cď	In	Sn	Sb	Te	ĩ	Xe
85.468	87.62	88.906	91.224	92.906	95.95	(98)	101.07	102.91	106.42	Ag	112.41	114.82	118.71	121.76	127.60	126.90	1.008
55	56	00.700	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	•	Hf	Та	l w	Re	Os	l Ir	Pt	Au	Hg	Т	Pb	Bi	Po	At	Rn
132.91	137.33		178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	-	-	-
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	•	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og
-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		1 I I	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
		- 14	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			138.91	140.12	140.91	144.24	144.91	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
		IÍ	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
		Ч	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
		l	-	232.04	231.04	238.03	-	-	-	-	-	-	-	-	-	-	-

- 1. Quick fire round! [2 marks] each, unless otherwise stated
 - a) Which halide will form a Grignard reagent faster, 1-chloropropane or 1-iodopropane? BRIEFLY explain why.
 - b) Name a method for making an organometallic reagent, OTHER than a Grignard. [1 mark]
 - c) What reagent(s) would you use for this transformation?


d) BRIEFLY describe the characteristics of a "hard" nucleophile

- e) Suggest a reagent for the reduction of a carboxylic acid to a primary alcohol. [1 mark]
- f) In the Felkin-Anh model, the major conformer (conformational isomer) of the substrate is the one that reacts. [1 mark]

TRUE or FALSE

g) The largest coefficient in the HOMO of an enolate is on which atom?

h) Draw all the enol forms of the following molecule. Which do you expect to be the major tautomer that this molecule exists in? BRIEFLY explain why.

i) Rank the following enolisable compounds in order of DECREASING acidity (*i.e.* increasing *p*K_a)

- j) The *thermodynamic product* of a reaction is the lowest energy product of a reaction. BRIEFLY explain what a <u>kinetic product</u> is and why it forms.
- k) The following ketone can form either a *cis* or a *trans* enolate, depending on the conditions/reagents chosen. What conditions/reagents would you use to selectively form the *trans* enolate?

I) What are TWO possible problems with alkylation of a standard enolate?

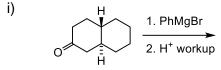
m) Draw the enamine that you would to be the major product in this reaction:

$$\bigvee_{H}^{O} + \bigvee_{H}^{N} \xrightarrow{H^{+} \text{ (cat.)}}$$

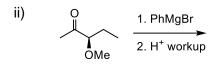
2. When these two amides are subjected to LiAlH₄, two different products are formed. Predict the product of each reaction and draw a mechanism for its formation. [5 marks each] **Explain the difference in reactivity!**

Ph N, Me LiAlH₄ a)

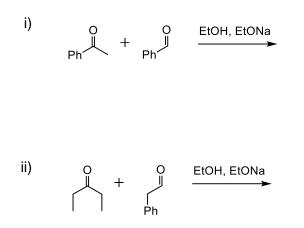
b) Ph N OMe LiAIH₄


3. Hopefully you saw this one coming... [5 marks each] Predict the stereochemistry of the products of the following reactions with the aid of a mechanism and appropriate 3D conformations *etc.*

a)
$$0$$
 1. PhMgBr
2. H⁺ workup



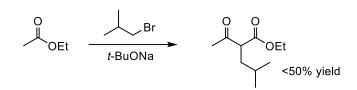
3. H^+ workup



OR

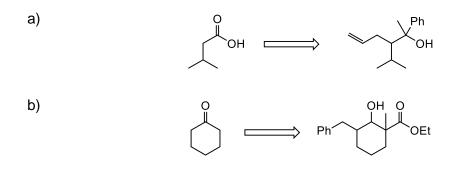
- 4.
- a) Predict the product formed in each of the following reactions, each of which only yield one major product. Mechanisms not required (just this once). Explain the selectivity/control (if there is any). [5 marks]

b) Provide a mechanism for this reaction. Explain the driving force(s) for the reaction. [5 marks]



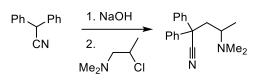
When the base is sodium *tert*-butoxide (*t*-BuO⁻) the desired product is formed.

However, when the base is sodium ethoxide (EtO⁻), none of the desired product is formed. Why? What product is formed instead? [3 marks]


b) When ethyl acetate is used as the substrate with *tert*-butoxide as the base, the alkylation does not proceed as planned and forms a mixture of products.

Propose a mechanism that explains the formation of this product from the reaction (note: this is not the only product formed!): [7 marks]

Name: ___


6. Propose syntheses of **ONE** of the following molecules from the given starting materials. [10 marks]

Name: _____

Bonus question!

When we were discussing the synthesis of methadone, I showed you the following enolate-like alkylation:

Draw a mechanism that explains the regioselectivity of the product formed